You are here: Home / People / Mikael C. Rechtsman
Mikael C. Rechtsman

Mikael C. Rechtsman

Main Content

  • Assistant Professor of Physics

University Park, PA 16802
Email: mcrworld [ AT ] psu [ DOT ] edu

Education

  1. Massachusetts Institute of Technology (S.B. Physics, 2003)
  2. Princeton University (Ph.D. Physics, 2008)

Websites

Honors and Awards

  • Kaufman Foundation New Investigator Grant
  • Alfred P. Sloan Foundation Research Fellow
  • Kavli Fellow of the National Academy of Sciences
  • Fine postdoctoral fellowship
  • Azrieli postdoctoral fellowship
  • Ray Grimm computational physics award
  • NSERC graduate fellowship

Selected Publications

Experimental observation of optical Weyl points and fermi arc-like surface states, Jiho Noh, Sheng Huang, Daniel Leykam, YD Chong, Kevin P Chen, and Mikael C Rechtsman, Nature Physics, 13(6):611–617 (2017).
Topologically protected bound states in photonic parity-time-symmetric crystals, S Weimann, M Kremer, Y Plotnik, Y Lumer, S Nolte, KG Makris, M Segev, MC Rechtsman, and A Szameit,  Nature Materials, 16:433438 (2017).
Disorder-induced floquet topological insulators, Paraj Titum, Netanel H Lindner, Mikael C Rechtsman, and Gil Refael, Physical Review Letters, 114(5):056801 (2015).
Observation of novel edge states in photonic graphene, Y Plotnik, MC Rechtsman, D Song, JM Zeuner, A Szameit, M Segev, Z Chen, Nature Materials 13, 5762 (2014).
Self-localized states in photonic topological insulators, Y Lumer, Y Plotnik, MC Rechtsman and M Segev, Phys. Rev. Lett. 111, 243905 (2013).
Photonic Floquet Topological Insulators, MC Rechtsman, JM Zeuner, Y Plotnik, Y Lumer, D Podolsky, S Nolte, F Dreisow, M Segev, A Szameit, Nature 496,196–200 (2013).
Topological creation and destruction of edge states in photonic graphene, MC Rechtsman, Y Plotnik, JM Zeuner, D Song, Z Chen, A Szameit, M Segev, Phys. Rev. Lett. 111, 103901 (2013).
Strain-induced pseudomagnetic field and Landau levels in photonic structures, MC Rechtsman, JM Zeuner, M Heinrich, A Tunnermann, M Segev, A Szameit, Nature Photonics 7, 153-158 (2013).
    - See interview by Rachel Won in Nature Photonics: "Can strain magnetize light?"
    - See News and Views article in Nature Photonics by Thomas Lepetit
Negative radiation pressure and negative effective refractive index via dielectric birefringenceJ Nemirovsky, MC Rechtsman, M Segev, Optics Express 20, 8, 8907-8914 (2012).
    - Featured in Nature Photonics' Research highlights section
    - Featured in Scientific American
    Featured in Wired
Disorder-enhanced transport in photonic quasicrystals, L Levi, MC Rechtsman, T Schwartz, O Manela, B Freedman, M Segev, Science, 332, 1541 (2011).
    - See Nature Photonics News and Views article (by Z. V. Vardeny and A. Vahata) on this article 
    - Selected to be featured in Optics and Photonics news' "Optics in 2011" issue (forthcoming).

Amorphous photonic lattices: band gaps, effective mass, and suppressed transport, MC Rechtsman, A Szameit, Felix Dreisow, Matthias Heinrich, Robert Keil, Stefan Nolte, M Segev, Phys. Rev. Lett. 106, 193904 (2011).

Research Interests

Photonics experiment and theory: my group explores the linear, nonlinear, and quantum optics of complex photonic structures.  One example is the new field of topological photonics - just recently, we showed that light could be protected from scattering in a photonic crystal structure much as electrons are in a solid-state topological insulator (Rechtsman et al., Nature 496, 196-200 (2013)).  What are the device implications for this robustness of photon transport?  Can we topologically protect photonic quantum information?  Can we use these ideas to bulid tiny optical diodes?  How will photon interactions (nonlinearity) alter topological effects?  

Filed under: